A team of NASA and university scientists has achieved the first definitive detection of methane in the atmosphere of Mars. This discovery indicates the planet is either biologically or geologically active.
The team found methane in the Martian atmosphere by carefully observing the planet throughout several Mars years with NASA's Infrared Telescope Facility and the W.M. Keck telescope, both at Mauna Kea, Hawaii. The team used spectrometers on the telescopes to spread the light into its component colors, as a prism separates white light into a rainbow. The team detected three spectral features called absorption lines that together are a definitive signature of methane.
"Methane is quickly destroyed in the Martian atmosphere in a variety of ways, so our discovery of substantial plumes of methane in the northern hemisphere of Mars in 2003 indicates some ongoing process is releasing the gas," said Michael Mumma of NASA's Goddard Space Flight Center in Greenbelt, Md. "At northern mid-summer, methane is released at a rate comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, Calif." Mumma is lead author of a paper describing this research that will appear in Science Express on Thursday.
Methane, four atoms of hydrogen bound to a carbon atom, is the main component of natural gas on Earth. Astrobiologists are interested in these data because organisms release much of Earth's methane as they digest nutrients. However, other purely geological processes, like oxidation of iron, also release methane.
"Right now, we do not have enough information to tell whether biology or geology -- or both -- is producing the methane on Mars," Mumma said. "But it does tell us the planet is still alive, at least in a geologic sense. It is as if Mars is challenging us, saying, 'hey, find out what this means.' "
If microscopic Martian life is producing the methane, it likely resides far below the surface where it is warm enough for liquid water to exist. Liquid water is necessary for all known forms of life, as are energy sources and a supply of carbon.
"On Earth, microorganisms thrive about 1.2 to 1.9 miles beneath the Witwatersrand basin of South Africa, where natural radioactivity splits water molecules into molecular hydrogen and oxygen," Mumma said. "The organisms use the hydrogen for energy. It might be possible for similar organisms to survive for billions of years below the permafrost layer on Mars, where water is liquid, radiation supplies energy, and carbon dioxide provides carbon. Gases, like methane, accumulated in such underground zones might be released into the atmosphere if pores or fissures open during the warm seasons, connecting the deep zones to the atmosphere at crater walls or canyons."
It is possible a geologic process produced the Martian methane, either now or eons ago. On Earth, the conversion of iron oxide into the serpentine group of minerals creates methane, and on Mars this process could proceed using water, carbon dioxide and the planet's internal heat. Although there is no evidence of active volcanism on Mars today, ancient methane trapped in ice cages called clathrates might be released now.
"We observed and mapped multiple plumes of methane on Mars, one of which released about 19,000 metric tons of methane," said co-author Geronimo Villanueva of the Catholic University of America in Washington. "The plumes were emitted during the warmer seasons, spring and summer, perhaps because ice blocking cracks and fissures vaporized, allowing methane to seep into the Martian air."
According to the team, the plumes were seen over areas that show evidence of ancient ground ice or flowing water. Plumes appeared over the Martian northern hemisphere regions such as east of Arabia Terra, the Nili Fossae region, and the south-east quadrant of Syrtis Major, an ancient volcano about 745 miles across.
One method to test whether life produced this methane is by measuring isotope ratios. Isotopes of an element have slightly different chemical properties, and life prefers to use the lighter isotopes. A chemical called deuterium is a heavier version of hydrogen. Methane and water released on Mars should show distinctive ratios for isotopes of hydrogen and carbon if life was responsible for methane production. It will take future missions, like NASA's Mars Science Laboratory, to discover the origin of the Martian methane.
The research was funded by the Planetary Astronomy Program at NASA Headquarters in Washington and the Astrobiology Institute at NASA's Ames Research Center in Moffett Field, Calif. The University of Hawaii manages NASA's Infrared Telescope Facility.
http://www.nasa.gov/centers/goddard/home/index.html
Mars May Still Be A Living Planet
Definitive Evidence For Ancient Lake On Mars
A University of Colorado at Boulder research team has discovered the first definitive evidence of shorelines on Mars, an indication of a deep, ancient lake there and a finding with implications for the discovery of past life on the Red Planet.
Estimated to be more than 3 billion years old, the lake appears to have covered as much as 80 square miles and was up to 1,500 feet deep -- roughly the equivalent of Lake Champlain bordering the United States and Canada, said CU-Boulder Research Associate Gaetano Di Achille, who led the study. The shoreline evidence, found along a broad delta, included a series of alternating ridges and troughs thought to be surviving remnants of beach deposits.
"This is the first unambiguous evidence of shorelines on the surface of Mars," said Di Achille. "The identification of the shorelines and accompanying geological evidence allows us to calculate the size and volume of the lake, which appears to have formed about 3.4 billion years ago."
A paper on the subject by Di Achille, CU-Boulder Assistant Professor Brian Hynek and CU-Boulder Research Associate Mindi Searls, all of the Laboratory for Atmospheric and Space Physics, has been published online in Geophysical Research Letters, a publication of the American Geophysical Union.
Images used for the study were taken by a high-powered camera known as the High Resolution Imaging Science Experiment, or HiRISE. Riding on NASA's Mars Reconnaissance Orbiter, HiRISE can resolve features on the surface down to one meter in size from its orbit 200 miles above Mars.
An analysis of the HiRISE images indicate that water carved a 30-mile-long canyon that opened up into a valley, depositing sediment that formed a large delta. This delta and others surrounding the basin imply the existence of a large, long-lived lake, said Hynek, also an assistant professor in CU-Boulder's geological sciences department. The lake bed is located within a much larger valley known as the Shalbatana Vallis.
"Finding shorelines is a Holy Grail of sorts to us," said Hynek.
In addition, the evidence shows the lake existed during a time when Mars is generally believed to have been cold and dry, which is at odds with current theories proposed by many planetary scientists, he said. "Not only does this research prove there was a long-lived lake system on Mars, but we can see that the lake formed after the warm, wet period is thought to have dissipated."
Planetary scientists think the oldest surfaces on Mars formed during the wet and warm Noachan epoch from about 4.1 billion to 3.7 billion years ago that featured a bombardment of large meteors and extensive flooding. The newly discovered lake is believed to have formed during the Hesperian epoch and postdates the end of the warm and wet period on Mars by 300 million years, according to the study.
The deltas adjacent to the lake are of high interest to planetary scientists because deltas on Earth rapidly bury organic carbon and other biomarkers of life, according to Hynek. Most astrobiologists believe any present indications of life on Mars will be discovered in the form of subterranean microorganisms.
But in the past, lakes on Mars would have provided cozy surface habitats rich in nutrients for such microbes, Hynek said.
The retreat of the lake apparently was rapid enough to prevent the formation of additional, lower shorelines, said Di Achille. The lake probably either evaporated or froze over with the ice slowly turning to water vapor and disappearing during a period of abrupt climate change, according to the study.
Di Achille said the newly discovered pristine lake bed and delta deposits would be would be a prime target for a future landing mission to Mars in search of evidence of past life.
"On Earth, deltas and lakes are excellent collectors and preservers of signs of past life," said Di Achille. "If life ever arose on Mars, deltas may be the key to unlocking Mars' biological past."
http://www.colorado.edu/
Posted by : Ela on | Labels: mars |
Mars Sample Return
The first robotic mission to return samples to Earth from Mars took a further step toward realisation with the recent publication of a mission design report by the iMARS Working Group. The report defines key elements of the future internationally-funded mission involving the cooperation of ESA, NASA and other national agencies.
iMARS, which stands for the International Mars Architecture for the Return of Samples, is a committee of the International Mars Exploration Working Group made up of scientists, engineers, strategic planners, and managers. The report, which comes after months of deliberation, outlines the scientific and engineering requirements of such an international mission to be undertaken in the timeframe 2020-2022.
The Mars Sample Return mission is an essential step with respect to future exploration goals and the prospect of establishing a future human mission to Mars. Returned samples will increase the knowledge of the properties of Martian soil and contribute significantly to answering questions about the possibility of life on the Red Planet. This mission will improve our understanding of the Mars environment to support planning for the future human exploration.
The iMARS report outlines the mission’s scientific objectives including the types and quantities of samples to be returned from Mars; the different mission elements (launchers, spacecraft, Mars lander, a rover and a Mars ascent vehicle) and ground processing facilities necessary to contain and analyse the received samples in a protected environment. A preliminary timeline for the mission and approximate budget has also been defined.
“Exploration is gaining momentum year by year, as is the experience and knowledge gained by ESA and its international partners in this area” said Bruno Gardini ESA’s Exploration Programme Manager in the Directorate of Human Spaceflight and iMARS study leader. “The information we gain from current Mars missions and from the ISS provide a basis not only for future robotic missions but also a stepping stone for the human exploration missions.”
http://www.esa.int/esaCP/index.html
Posted by : Ela on Thursday, May 21, 2009 | Labels: mars, science news, space |
New Spaceship Force Field Makes Mars Trip Possible
According to the international space agencies, "space weather" is the single greatest obstacle to deep space travel. Radiation from the sun and cosmic rays pose a deadly threat to astronauts in space. New research shows how knowledge gained from the pursuit of nuclear fusion research may reduce the threat to acceptable levels, making humanity's first mission to Mars a much greater possibility.
The solar energetic particles, although just part of the 'cosmic rays' spectrum, are of greatest concern because they are the most likely to cause deadly radiation damage to the astronauts.
Large numbers of these energetic particles occur intermittently as "storms" with little warning and are already known to pose the greatest threat to man. Nature helps protect the Earth by having a giant "magnetic bubble" around the planet called the magnetosphere.
The Apollo astronauts of the 1960's and 70's who walked upon the Moon are the only humans to have travelled beyond the Earth's natural "force field" – the Earth's magnetosphere. With typical journeys on the Apollo missions lasting only about 8 days, it was possible to miss an encounter with such a storm; a journey to Mars, however, would take about eighteen months, during which time it is almost certain that astronauts would be enveloped by such a "solar storm".
Space craft visiting the Moon or Mars could maintain some of this protection by taking along their very own portable "mini"-magnetosphere. The idea has been around since the 1960's but it was thought impractical because it was believed that only a very large (more than 100km wide) magnetic bubble could possibly work.
Researchers at the Science and Technology Facilities Council's Rutherford Appleton Laboratory, the Universities of York, Strathclyde and IST Lisbon, have undertaken experiments, using know-how from 50 years of research into nuclear fusion, to show that it is possible for astronauts to shield their spacecrafts with a portable magnetosphere - scattering the highly charged, ionised particles of the solar wind and flares away from their space craft.
Computer simulations done by a team in Lisbon with scientists at Rutherford Appleton last year showed that theoretically a very much smaller "magnetic bubble" of only several hundred meters across would be enough to protect a spacecraft.
Now this has been confirmed in the laboratory in the UK using apparatus originally built to work on fusion. By recreating in miniature a tiny piece of the Solar Wind, scientists working in the laboratory were able to confirm that a small "hole" in the Solar Wind is all that would be needed to keep the astronauts safe on their journey to our nearest neighbours.
Dr. Ruth Bamford, one of the lead researchers at the Rutherford Appleton Laboratory, said, "These initial experiments have shown promise and that it may be possible to shield astronauts from deadly space weather."
http://www.iop.org/
Posted by : Ela on | Labels: mars, science news |