How The Early Universe Got Dusty Remains A Mystery


Astronomers who think they know how the very early universe came to have so much interstellar dust need to think again, according to new results from the Spitzer Space Telescope.


In the last few years, observers have discovered huge quantities of interstellar dust near the most distant quasars in the very young universe, only 700 million years after the cosmos was born in the Big Bang.

"And that becomes a big question," said Oliver Krause of the University of Arizona Steward Observatory in Tucson and the Max Planck Institute for Astronomy in Heidelberg. "How could all of this dust have formed so quickly?"

Astronomers know two processes that form the dust, Krause said. One, old sun-like stars near death generate dust. Two, infrared space missions have revealed the dust is produced in supernovae explosions.

"The first process takes several billion years," Krause noted. "Supernovae explosions, by contrast, produce dust in much less time, only about 10 million years."

So when astronomers reported detecting submillimeter emission from massive amounts of cold interstellar dust in the supernova remnant Cassiopeia A last year, some considered the mystery solved. Type II supernovae like 'Cas A' likely produced the interstellar dust in the very early universe, they concluded. (Type II supernovae come from massive stars that blow apart in huge explosions after their cores collapse.)

Krause and colleagues from UA's Steward Observatory and the Max Planck institute in Heidelberg have now discovered that the detected submillimeter emission comes not from the Cas A remnant itself but from the molecular cloud complex known to exist along the line of sight between Earth and Cas A. They report the work in the Dec. 2 issue of Nature.

Cas A is the youngest known supernova remnant in our Milky Way. It is about 11,000 light years away, behind the Perseus spiral arm clouds that are roughly 9,800 light years away. Krause suspects that the Perseus clouds explain why late 17th century astronomers didn't report observing the brilliant Cas A outburst around A.D. 1680. Cas A is so close to Earth that the supernova should have been the brightest stellar object in the sky, but dust in the Perseus clouds eclipsed the view.

The Arizona and German team mapped Cas A at 160-micron wavelengths using the ultra-heat-sensitive Multiband Imaging Photometer (MIPS) aboard the Spitzer Space Telescope. These long wavelengths are the most sensitive to cold interstellar dust emission. They then compared the results with maps of interstellar gas previously made with radio telescopes. They found that the dust in these interstellar clouds account for virtually all the emission at 160 microns from the direction of Cas A.

Minus the emission from this dust, there is no evidence for large amounts of cold dust in Cas A, the team concludes.

"Astronomers will have to go on searching for the source of the dust in the early universe," UA Steward Observatory astronomer and Regents' Professor George Rieke said. Rieke is principal investigator for the Spitzer Space Telescope's MIPS instrument and a co-author of the Nature paper.

"Solving this riddle will show astronomers where and how the first stars formed, or perhaps indicate there is some non-stellar process that can produce large amounts of dust," Rieke said. "Either way, (finding the source of the dust) will reveal what went on at the formative stage for stars and galaxies, an epoch that is nearly unobserved in any other way."

Authors of the Nature article, "No cold dust within the supernova remnant Cassiopeia A," are Oliver Krause, Stephan M. Birkmann, George H. Rieke, Dietrich Lemke, Ulrich Klaas, Dean C. Hines and Karl D. Gordon.

Birkmann, Lemke and Klaas are with the Max Planck Institute for Astronomy in Heidelberg. Krause, Rieke, and Gordon are with the University of Arizona Steward Observatory. Hines is with the Space Science Institute in Boulder, Colo.

The Spitzer Space Telescope is managed for NASA by the Jet Propulsion Laboratory in Pasadena, Calif.

Colors Of Quasars Reveal Dusty Universe


The vast expanses of intergalactic space appear to be filled with a haze of tiny, smoke-like "dust" particles that dim the light from distant objects and subtly change their colors, according to a team of astronomers from the Sloan Digital Sky Survey (SDSS-II).


"Galaxies contain lots of dust, most of it formed in the outer regions of dying stars," said team leader Brice Ménard of the Canadian Institute for Theoretical Astrophysics. "The surprise is that we are seeing dust hundreds of thousands of light-years outside of the galaxies, in intergalactic space."

To discover this intergalactic dust, the team analyzed the colors of distant quasars whose light passes in the vicinity of foreground galaxies on its way to the Earth.

Dust grains block blue light more effectively than red light, explained astronomer Ryan Scranton of the University of California, Davis, another member of the discovery team. "We see this when the sun sets: light rays pass through a thicker layer of the atmosphere, absorbing more and more blue light, causing the sun to appear reddened. We find similar reddening of quasars from intergalactic dust, and this reddening extends up to ten times beyond the apparent edges of the galaxies themselves."

The team analyzed the colors of about 100,000 distant quasars located behind 20 million galaxies, using images from SDSS-II. "Putting together and analyzing this huge dataset required cutting-edge ideas from computer science and statistics," said team member Gordon Richards of Drexel University. "Averaging over so many objects allowed us to measure an effect that is much too small to see in any individual quasar."

Supernova explosions and "winds" from massive stars drive gas out of some galaxies, Ménard explained, and this gas may carry dust with it. Alternatively, the dust may be pushed directly by starlight.

"Our findings now provide a reference point for theoretical studies," said Ménard.

Intergalactic dust could also affect planned cosmological experiments that use supernovae to investigate the nature of "dark energy," a mysterious cosmic component responsible for the acceleration of the expansion of the universe.

"Just like household dust, cosmic dust can be a nuisance," said Scranton. "Our results imply that most distant supernovae are seen through a bit of haze, which may affect estimates of their distances."

Intergalactic dust doesn't remove the need for dark energy to explain current supernova data, Ménard explained, but it may complicate the interpretation of future high-precision distance measurements. "These experiments are very ambitious in their goals," said Ménard, "and subtle effects matter."


http://www.sdss.org/

Physicists See The Cosmos In A Coffee Cup


A Duke University professor and his graduate student have discovered a universal principle that unites the curious interplay of light and shadow on the surface of your morning coffee with the way gravity magnifies and distorts light from distant galaxies.


They think scientists will be able to use violations of this principle to map unseen clumps of dark matter in the universe.

Light rays naturally reflect off a curve like the inside surface of a coffee cup in a curving, ivy leaf pattern that comes to a point in the center and is brightest along its edge.

Mathematicians and physicists call that shape a "cusp curve," and they call the bright edge a "caustic," based on an alternative dictionary definition meaning "burning bright," explains Arlie Petters, a Duke professor of mathematics, physics and business administration. "It happens because a lot of light rays can pile up along curves."

Drawn by the mathematically-inclined artist Leonardo da Vinci in the early 16th century, caustics can be seen elsewhere in everyday life, including sunlight reflecting across a swimming pool's surface and choppy wave-light patterns reflecting off a boat hull.

Caustics also show up in gravitational lensing, a phenomenon caused by galaxies so massive that their gravity bends and distorts light from more distant galaxies. "It turns out that their gravity is so powerful that some light rays are also going to pile up along curves," said Petters, a gravitational lensing expert.

"Mother Nature has to be creating these things," Petters said. "It's amazing how what we can see in a coffee cup extends into a mathematical theorem with effects in the cosmos."

From the vantage point of Earth, the entire cosmos looks like a vast interplay of gravity and light that can extend far back into spacetime. "As with any illumination pattern, some areas will be brighter than others," Petters said. "And the brightest parts will be along these caustic curves."

Interpreting data from telescope surveys correctly requires understanding the distortions inherent in lensing, which sometimes warps a more distant point of light into multiple and magnified copies of themselves.

Petters and other researchers have previously found that, if such a light source seems to be juxtaposed within the confines of a caustic arch, two duplicate images will appear to be positioned abnormally close to each other and also seem equally bright. And because these clones are of seemingly equal brightness, subtracting one luminosity from the other results in a difference of zero.

In an article appearing in the March 23 Journal of Mathematical Physics, Petters and graduate student Amir Aazami extended the mathematics of such relatively simple examples to include what Petters called "higher order caustics." In such situations the interplay of light and gravity may extend further into spacetime and undergo various forms of "caustic metamorphosis" in the process.

Aazami was informally testing out a special case of their evolving caustics theorem called an "ellyptic umbilic" by using a technical computing software program called Mathematica when he noticed a pattern.

"It kept getting zero over and over again," Aazami said, no matter what scenario he tried the software on. "So I thought, 'it's making a mistake.' And I went back and looked again, and I kept getting zero. And I said, 'this is beginning to make sense!' That was the 'Ah Ha!' moment."

Petters realized his graduate student had found a universal mathematical principle so pervasive that it can impose balance on the most complicated gravitational lensing illusions. For instance, if lensing produces four light source copies of uneven brightnesses, the relative dimness of some is precisely balanced by the relative luminosity of others so they cancel each other out.

"It's miraculous that they cancel out," Petters said. "This relates to very sophisticated mathematics that you would never think could have anything to do with nature."

The Duke researchers said that for the simplest caustics, the theorem has already been corroborated by a few actual gravitational lensing observations. And they expect the higher order caustics to be observed once the Large Synoptic Survey Telescope (LSST), now being assembled in Chile, begins what Petters called "the most massive survey of the sky known" in a few years.

"We feel very confident that these universal invariants will show themselves in the data to come from the LSST," he said.

Another scenario he predicts are exceptions to the rule: "For one of the higher order caustics, if there are two pairs of lensed images that are close to each other but not equally bright, then the theorem is violated," he said.

"The reason would be some substructure in the galaxy," he said, likely dark matter near one of the images that causes it to be demagnified.

Dark matter is a mysterious substance that astronomers cannot directly observe but can "sense" by its gravitational tug on light. By using the LSST in conjunction with their theorem, astronomers "would be able to identify dark matter substructures in complex galactic systems," Petters predicted

The research was supported by the National Science Foundation.


http://www.duke.edu/

Earliest Meteorites Provide New Piece In Planetary Formation Puzzle


Researchers trying to understand how the planets formed have uncovered a new clue by analysing meteorites that are older than the earth.

The research shows that the process which depleted planets and meteorites of so-called volatile elements such as zinc, lead and sodium, must have been one of the first things to happen in our nebula.

The implication of this clue is that 'volatile depletion' may be an inevitable part of planet formation - a feature not just of our Solar System, but of many other planetary systems too.

The researchers at Imperial College London reached their conclusions after analysing the composition of primitive meteorites, coal-like rocks that are older than the earth and which have barely changed since the Solar System was made up of fine dust and gas.

Their analysis, published today in the Proceedings of the National Academy of Sciences, shows that all the components that make up these rocks are depleted of volatile elements. This means that volatile element depletion must have occurred before the earliest solids had formed.

Dr. Phil Bland, from Imperial's Department of Earth Science and Engineering, who led the research, explains: "Studying meteorites helps us to understand the initial evolution of the early Solar System, its environment, and what the material between stars is made of. Our results answer one of a huge number of questions we have about the processes that converted a nebula of fine dust and gas into planets."

For planetary scientists, the most valuable meteorites are those that are found immediately after falling to earth, and so are only minimally contaminated by the terrestrial environment. The researchers analysed around half of the approximately 45 primitive meteorite falls in existence around the world.

All of the terrestrial planets in the Solar System as far out as Jupiter, including Earth, are depleted of volatile elements. Researchers have long known that this depletion must have been an early process, but it was unknown whether it occurred at the beginning of the formation of the Solar System, or a few million years later.

Dr. Phil Bland is a member of the Impacts and Astromaterials Research Centre (IARC), which combines planetary science researchers from Imperial College London and the Natural History Museum.


http://www3.imperial.ac.uk/media

How Special Is The Solar System?


On the evidence to date, our solar system could be fundamentally different from the majority of planetary systems around stars because it formed in a different way. If that is the case, Earth-like planets will be very rare. After examining the properties of the 100 or so known extrasolar planetary systems and assessing two ways in which planets could form, Dr Martin Beer and Professor Andrew King of the University of Leicester, Dr Mario Livio of the Space Telescope Science Institute and Dr Jim Pringle of the University of Cambridge flag up the distinct possibility that our solar system is special in a paper to be published in the Monthly Notices of the Royal Astronomical Society.


In our solar system, the orbits of all the major planets are quite close to being circular (apart from Pluto’s, which is a special case), and the four giant planets are a considerable distance from the Sun. The extrasolar planets detected so far - all giants similar in nature to Jupiter – are by comparison much closer to their parent stars, and their orbits are almost all highly elliptical and so very elongated.

‘There are two main explanations for these observations,’ says Martin Beer. ‘The most intriguing is that planets can be formed by more than one mechanism and the assumption astronomers have made until now - that all planets formed in basically the same way - is a mistake.’

In the picture of planet formation developed to explain the solar system, giant planets like Jupiter form around rocky cores (like the Earth), which use their gravity to pull in large quantities of gas from their surroundings in the cool outer reaches of a vast disc of material. The rocky cores closer to the parent star cannot acquire gas because it is too hot there and so remain Earth-like.

The most popular alternative theory is that giant planets can form directly through gravitational collapse. In this scenario, rocky cores - potential Earth-like planets - do not form at all. If this theory applies to all the extrasolar planet systems detected so far, then none of them can be expected to contain an Earth-like planet that is habitable by life of the kind we are familiar with.

However, the team are cautious about jumping to a definite conclusion too soon and warn about the second possible explanation for the apparent disparity between the solar system and the known extrasolar systems. Techniques currently in use are not yet capable of detecting a solar-system look-alike around a distant star, so a selection effect might be distorting the statistics - like a fisherman deciding that all fish are larger than 5 inches because that is the size of the holes in his net.

It will be another 5 years or so before astronomers have the observing power to resolve the question of which explanation is correct. Meanwhile, the current data leave open the possibility that the solar system is indeed different from other planetary systems.

Notes

1. Currently around 100 extrasolar planets are known which have been detected through the wobble of their host stars caused by the motion of the planets themselves.

2. The paper has recently been accepted by the Monthly Notices of the Royal Astronomical Society but no publication date has yet been set.


---------------------------------------------------------------------------
http://www.ras.org.uk/

First Planet Under Three Suns Is Discovered


An extrasolar planet under three suns has been discovered in the constellation Cygnus by a planetary scientist at the California Institute of Technology using the 10-meter Keck I telescope in Hawaii. The planet is slightly larger than Jupiter and, given that it has to contend with the gravitational pull of three bodies, promises to seriously challenge our current understanding of how planets are formed.

In the July 14 issue of Nature, Maciej Konacki, a senior postdoctoral scholar in planetary science at Caltech, reports on the discovery of the Jupiter-class planet orbiting the main star of the close-triple-star system known as HD 188753. The three stars are about 149 light-years from Earth and are about as close to one another as the distance between the sun and Saturn.

In other words, a viewer there would see three bright suns in the sky. In fact, the sun that the planet orbits would be a very large object in the sky indeed, given that the planet's "year" is only three and a half days long. And it would be yellow, because the main star of HD 188753 is very similar to our own sun. The larger of the other two suns would be orange, and the smaller red.

Konacki refers to the new type of planet as "Tatooine planets," because of the similarity to Luke Skywalker's view of his home planet's sky in the first Star Wars movie.

"The environment in which this planet exists is quite spectacular," says Konacki. "With three suns, the sky view must be out of this world-literally and figuratively."

However, Konacki adds that the fact that a planet can even exist in a multiple-star system is amazing in itself. Binary and multiple stars are quite common in the solar neigborhood, and in fact outnumber single stars by some 20 percent.

Researchers have found most of the extrasolar planets discovered so far by using a precision velocity technique that is easier to employ on studies of single stars. Experts generally avoided close-binary and close-multiple stars because the existing planet detection techniques fail for such complicated systems, and also because theories of solar-system formation suggested that planets were very unlikely to form in such environments.

Konacki's breakthrough was made possible by his development of a novel method that allows him to precisely measure velocities of all members of close-binary and close-multiple-star systems. He used the technique for a search for extrasolar planets in such systems with the Keck I telescope. The planet in the HD 188753 system is the first one from this survey.

"If we believe that the same basic processes lead to the formation of planets around single stars and components of multiple stellar systems, then such processes should be equally feasible, regardless of the presence of stellar companions," Konacki says. "Planets from complicated stellar systems will put our theories of planet formation to a strict test."

Scientists in 1995 discovered the first "hot Jupiter"-in other words, an extrasolar gas-giant planet with an orbital period of three to nine days. Today, more than 20 such planets are known to orbit other stars. These planets are believed to form in a disk of gas and condensed matter at or beyond three astronomical units (three times the 93-million-mile distance between the sun and Earth).

A sufficient amount of solid material exists at three astronomical units to produce a core capable of capturing enough gas to form a giant planet. After formation, these planets are believed to migrate inward to their present very close orbits.

If the parent star is orbited by a close stellar companion, then its gravitational pull can significantly truncate a protoplanetary disk around the main star. In the case of HD 188753, the two stellar companions would truncate the disk around the main star to a radius of only 1.3 astronomical units, leaving no space for a planet to form.

"How that planet formed in such a complicated setting is very puzzling. I believe there is yet much to be learned about how giant planets are formed," says Konacki.

The research was funded by NASA

http://www.caltech.edu/

Three New Exo-planets Discovered


The UK's leading team of planet-hunting astronomers, the Wide Angle Search for Planets (WASP), have announced the discovery of three new planets.

These extra-solar planets were seen to pass in front of, or transit, their host star. Studying such planets outside of our Solar System allows scientists to investigate how planetary systems form. WASP is the first team to detect planets in both the Northern and Southern Hemisphere using this technique.

Exoplanet expert Dr. Pierre Maxted comments “The planets are known as ‘hot-Jupiters’ as they are similar to Jupiter but are so close to their parent star that they orbit it in less than two days. This means that these planets have a surface temperature of nearly 2000°C and so are unlikely to host life. But finding these planets is important as these stars could also host much smaller planets similar to Earth, although detecting these worlds will be much more difficult”.

The planets orbit around stars similar to our Sun that are located at a distance of 850 light-years away from the Earth. Two are in the constellation of Phoenix visible only from the Southern hemisphere, while the third is in the Northern constellation of Lyra. All three stars are too faint to be seen with the naked eye, but are easily detectable with a small telescope.

Dr Coel Hellier, of Keele University, comments "When we see a transit we can deduce the size and mass of the planet and also what it is made of, so we can use these planets to study how solar systems form."

WASP-4 and WASP-5 are the first planets discovered by the WASP project's cameras in South Africa, and were confirmed by a collaboration with Swiss and French astronomers. "These two are now the brightest transiting planets in the Southern hemisphere" said Dr Hellier. WASP-3 is the third planet that the team has found in the North, using the SuperWASP camera sited in the Canary Islands.

Using data produced by SuperWASP’s cameras, which monitor up to 400,000 stars every minute, the new extra-solar planets were discovered as they were seen to pass in front of their host star.

Explaining the discovery, Dr Don Pollacco of Queen’s University, Belfast, Astrophysics Research Centre said: “We take pictures of the sky and measure the brightness of stars. If a planet is going around one of these stars and it happens to pass across the face of that star, our cameras will pick up the light from the star getting a little fainter.

“Discoveries such as these open up a whole new area of astronomy. Such transiting planets are important because they are the only ones that can have their mass and size measured directly. Astronomers can determine what they are made of and armed with this information we can begin to understand how these solar systems were formed.”

The WASP project is the most ambitious project in the world designed to discover large planets. Funding for the project comes from the UK Universities and the Science and Technology Facilities Council.

http://www.keele.ac.uk/

Jupiter-like Planets Could Form Around Twin Suns


Life on a planet ruled by two suns might be a little complicated. Two sunrises, two sunsets. Twice the radiation field.


In a paper published in the December 2008 issue of Astronomy and Astrophysics, astronomer Joel Kastner and his team suggest that planets may easily form around certain types of twin (or “binary”) star systems. A disk of molecules discovered orbiting a pair of twin young suns in the constellation Sagittarius strongly suggests that many such binary systems also host planets.

“We think the molecular gas orbiting these two stars almost literally represents ‘smoking gun’ evidence of recent or possibly ongoing ‘giant’ (Jupiter-like) planet formation around the binary star system,” says Kastner, professor at Rochester Institute of Technology’s Chester F. Carlson Center for Imaging Science.

Kastner used the 30-meter radiotelescope operated by the Institut de Radio Astronomie Millimetrique (IRAM) to study radio molecular spectra emitted from the vicinity of the two stars in a binary system called V4046 Sgr, which lies about 210 light-years away from our solar system. (V4046 Sgr is the 4046th brightest variable-brightness star in the constellation Sagittarius.) The scientists found “in large abundance” raw materials for planet formation around the nearby stars, including circumstellar carbon monoxide and hydrogen cyanide, in the noxious molecular gas cloud.

The young stars, approximately 10 million years old, are close in proximity to each other—only 10 solar diameters apart—and orbit each other once every 2.5 days.

“In this case the stars are so close together, and the profile of the gas in terms of the types of molecules that are there is so much like the types of gaseous disks that we see around single stars, that it’s a real link between planets forming around single stars and planets forming around double stars,” Kastner says.

Planets that have just formed around young stars like the V4046 Sgr twins might leave leftover gas, a potential clue for astronomers who hunt planets.

Recently, direct imaging of planets orbiting the single stars Fomalhaut and HR 8799 irrefutably confirmed the existence of exosolar planets—those that orbit stars other than our Sun. In the spring, Kastner hopes to use IRAM to look for gas left over from the formation of the planets orbiting HR 8799.

Kastner hopes to compare the molecular profile in the gas remnants surrounding the single star (HR 8799) with the gas composition surrounding the dual star-system (V4046 Sgr).

Not a planet hunter himself, Kastner encourages other scientists to look closely at V4046 Sgr to see if planets are forming around them.

“We really don’t have any idea right now about what kinds of planets form around double stars or even if planets can form around double stars,” Kastner says. “It’s not something that’s established. It’s theoretically possible, but I’m not aware of a single observation yet of a planet orbiting a double star. I hope someone will go looking soon, if they haven’t already, around V4046 Sagittarius.”


http://www.rit.edu/

Birth Of Tiniest Known Solar System


Scientists using a combination of ground-based and orbiting telescopes have discovered a failed star, less than one-hundredth the mass of the sun, possibly in the process of forming a solar system. It is the smallest known star-like object to harbor what appears to be a planet-forming disk of rocky and gaseous debris, which one day could evolve into tiny planets and create a solar system in miniature.


A team led by Kevin Luhman, assistant professor of astronomy and astrophysics at Penn State, will discuss this finding in the Dec. 10 issue of Astrophysical Journal Letters.

The discovered object, called a brown dwarf, is described as a "failed star" because it is not massive enough to sustain nuclear fusion like our sun. The object is only eight times more massive than Jupiter. The fact that a brown dwarf this small could be in the midst of creating a solar system challenges the very definition of star, planet, moon and solar system.

"Our goal is to determine the smallest 'sun' with evidence for planet formation," said Luhman. "Here we have a sun that is so small it is the size of a planet. The question then becomes, what do we call any little bodies that might be born from this disk: planets or moons?" If this protoplanetary disk does form into planets, the whole system would be a miniaturized version of our solar system -- with the central "sun", the planets and their orbits all roughly 100 times smaller.

Luhman's team detected the brown dwarf, called Cha 110913-773444, with NASA's Spitzer Space Telescope, the Hubble Space Telescope and two telescopes in the Chilean Andes, the Blanco telescope of the Cerro Tololo Inter-American Observatory and the Gemini South telescope, both international collaborations funded in part by the National Science Foundation. Luhman led a similar observation last year that uncovered a 15-Jupiter-mass brown dwarf with a protoplanetary disk.

Brown dwarfs are born like stars, condensing out of thick clouds of gas and dust. But unlike stars, brown dwarfs do not have enough mass -- and therefore do not have enough pressure and temperature in their cores -- to sustain nuclear fusion. They remain relatively cool objects visible in lower-energy wavelengths such as infrared. A protoplanetary disk is a flat disk made up of dust and gas that is thought to clump together to form planets. Our solar system was formed from such a disk about 5 billion years ago. NASA's Spitzer telescope has found dozens of disk-sporting brown dwarfs so far, several of which show the initial stages of the planet-building process. The material in these disks is beginning to stick together into what may be the "seeds" of planets.

With Spitzer, the science team spotted Cha 110913-773444 about 500 light years away in the constellation Chamaeleon. This brown dwarf is young, only about 2 million years old. The team studied properties of the brown dwarf with infrared instruments on the other observatories. The cool, dim protoplanetary disk was detectable only with Spitzer's Infrared Array Camera, which was developed at the Harvard-Smithsonian Center for Astrophysics.

In the past decade, advances in astronomy have led to the detection of small brown dwarfs and massive extra-solar planets, which has brought about a quandary in taxonomy. "There are two camps when it comes to defining planets versus brown dwarfs," said team member Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics. "Some go by size, and others go by how the object formed. For instance, this new object would be called a planet based on its size, but a brown dwarf based on how it formed." If one were to call the object a planet, Fazio said, then Spitzer may have discovered its first "moon-forming" disk. No matter what the final label may be, one thing is clear: The universe produces some strange solar systems very different from our own. Other members of the discovery team are Lucia Adame and Paola D'Alessio of the National Autonomous University of Mexico and Nuria Calvet and Lee Hartmann of the University of Michigan.

The 4-meter Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile is part of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) Inc. under a cooperative agreement with the National Science Foundation. The nearby 8-meter Gemini South telescope also is managed by AURA. NASA's Goddard Space Flight Center, Greenbelt, Md., built Spitzer's Infrared Array Camera. The instrument's principal investigator is Giovanni Fazio. The Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer mission for NASA. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena.

http://www.psu.edu/

Fifth Dwarf Planet Named Haumea


The International Astronomical Union (the IAU) has announced that the object previously known as 2003 EL61 is to be classified as the fifth dwarf planet in the Solar System and named Haumea.

The decision was made after discussions by members of the International Astronomical Union's Committee on Small Body Nomenclature (CSBN) and the IAU Working Group for Planetary System Nomenclature (WGPSN). This now means that the family of dwarf planets in the Solar System is up to five. They are now Ceres, Pluto, Haumea, Eris and Makemake.

The discovery of Haumea was announced in mid-2005, and the object was initially given the provisional designation of 2003 EL61. It is a bizarre object with a shape resembling a plump cigar. Its diameter is approximately the same as that of the dwarf planet Pluto; however, its odd shape means that it is much thinner. It is also known to be spinning very fast, making one rotation in about four hours. Some have suggested that this rapid rotation could be the reason Haumea came to look as it does - the dwarf planet has been drawn out and elongated by its swift spin.

Haumea sits among the trans-Neptunian objects, a vast ring of distant cold and rocky bodies in the outer Solar System. At this moment it is roughly 50 times the Sun-Earth distance from the Sun, but at its closest the elliptical orbit of Haumea brings it 35 times the Sun-Earth distance from our star.

Haumea is the name of the goddess of childbirth and fertility in Hawaiian mythology. The name is particularly apt as the goddess Haumea also represents the element of stone and observations of Haumea hint that, unusually, the dwarf planet is almost entirely composed of rock with a crust of pure ice.

Hawaiian mythology says that the goddess Haumea's children sprang from different parts of her body. The dwarf planet Haumea has a similar history, as it is joined in its orbit by two satellites that are thought to have been created by impacts with it in the past. During these impacts, parts of Haumea's icy surface were blasted off. The debris from these impacts is then thought to have gone onto form the two moons.

After their discovery, in 2005, the moons were also given provisional designations, but have now too been given names by the CSBN and the WGPSN. The first and largest moon is to be called Hi'iaka, after the Hawaiian goddess who is said to have been born from the mouth of Haumea and the patron goddess of the island of Hawai'i. The second moon of Haumea is named Namaka, a water spirit who is said to have been born from Haumea's body.


http://www.iau.org/

Strings Of Shadowy Rings Drape Saturn


Saturn's ring shadows appear wrapped in a harmonious symphony with the planet in this color view from the Cassini spacecraft.

Saturn and its rings would nearly fill the space between Earth and the Moon. Yet, despite their great breadth, the rings are a few meters thick and, in some places, very translucent. This image shows a view through the C ring, which is closest to Saturn, and through the Cassini division, the 4,800-kilometer-wide gap (2,980-miles) that arcs across the top of the image and separates the optically thick B ring from the A ring. The part of the atmosphere seen through the gap appears darker and more bluish due to scattering at blue wavelengths by the cloud-free upper atmosphere.

The different colors in Saturn's atmosphere are due to particles whose composition is yet to be determined. This image was obtained with the Cassini spacecraft narrow angle camera on July 30, 2004, at a distance of 7.6 million kilometers (4.7 million miles) from Saturn.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo.

http://www.jpl.nasa.gov/

Newfound Moon May Be Source Of Outer Saturn Ring


NASA's Cassini spacecraft has found within Saturn's G ring an embedded moonlet that appears as a faint, moving pinprick of light. Scientists believe it is a main source of the G ring and its single ring arc.

Cassini imaging scientists analyzing images acquired over the course of about 600 days found the tiny moonlet, half a kilometer (about a third of a mile) across, embedded within a partial ring, or ring arc, previously found by Cassini in Saturn's tenuous G ring.

"Before Cassini, the G ring was the only dusty ring that was not clearly associated with a known moon, which made it odd," said Matthew Hedman, a Cassini imaging team associate at Cornell University in Ithaca, N.Y. "The discovery of this moonlet, together with other Cassini data, should help us make sense of this previously mysterious ring."

Saturn's rings were named in the order they were discovered. Working outward they are: D, C, B, A, F, G and E. The G ring is one of the outer diffuse rings. Within the faint G ring there is a relatively bright and narrow, 250-kilometer-wide (150-miles) arc of ring material, which extends 150,000 kilometers (90,000 miles), or one-sixth of the way around the ring's circumference. The moonlet moves within this ring arc. Previous Cassini plasma and dust measurements indicated that this partial ring may be produced from relatively large, icy particles embedded within the arc, such as this moonlet.

Scientists imaged the moonlet on Aug. 15, 2008, and then they confirmed its presence by finding it in two earlier images. They have since seen the moonlet on multiple occasions, most recently on Feb. 20, 2009. The moonlet is too small to be resolved by Cassini's cameras, so its size cannot be measured directly. However, Cassini scientists estimated the moonlet's size by comparing its brightness to another small Saturnian moon, Pallene.

Hedman and his collaborators also have found that the moonlet's orbit is being disturbed by the larger, nearby moon Mimas, which is responsible for keeping the ring arc together.

This brings the number of Saturnian ring arcs with embedded moonlets found by Cassini to three. The new moonlet may not be alone in the G ring arc. Previous measurements with other Cassini instruments implied the existence of a population of particles, possibly ranging in size from 1 to 100 meters (about three to several hundred feet) across. "Meteoroid impacts into, and collisions among, these bodies and the moonlet could liberate dust to form the arc," said Hedman.

Carl Murray, a Cassini imaging team member and professor at Queen Mary, University of London, said, "The moon's discovery and the disturbance of its trajectory by the neighboring moon Mimas highlight the close association between moons and rings that we see throughout the Saturn system. Hopefully, we will learn in the future more about how such arcs form and interact with their parent bodies."

Early next year, Cassini's camera will take a closer look at the arc and the moonlet. The Cassini Equinox mission, an extension of the original four-year mission, is expected to continue until fall of 2010.

The finding is being announced March 3 in an International Astronomical Union circular.


http://www.jpl.nasa.gov/

NASA Tests Largest Rocket Parachutes Ever


NASA and industry engineers successfully completed the first test of the Ares I rocket's three main parachutes Wednesday. The parachutes -- the largest rocket parachutes ever manufactured -- are designed to slow the rapid descent of the rocket's spent first-stage motor, permitting its recovery for use on future flights.



The Ares I, the first rocket in NASA's Constellation Program, is designed to launch explorers aboard the Orion crew capsule on journeys to the International Space Station, the moon and beyond. The three main parachutes measure 150 feet in diameter and weigh 2,000 pounds each. They are a primary element of the rocket's deceleration system, which also includes a pilot parachute and drogue parachute. Deployed in a cluster, the main parachutes open at the same time, providing the drag necessary to slow the descent of the huge solid rocket motor to a soft landing in the ocean.

"The successful main chute cluster test today confirms the development and design changes we have implemented for the Ares I first stage recovery system," said Ron King, Ares I first stage deceleration subsystem manager for the Ares Projects at NASA's Marshall Space Flight Center in Huntsville, Ala. "Thanks to our great, collaborative team, the test went as anticipated, and all of our design objectives were met."

Engineers from Marshall managed the team that conducted this first cluster test at the U.S. Army's Yuma Proving Ground near Yuma, Ariz. This was the eighth in an ongoing series of flight tests supporting development of the Ares I recovery system. Researchers dropped the 41,500-pound load from a U.S. Air Force C-17 aircraft flying at an altitude of 10,000 feet. The parachutes and all test hardware functioned properly and landed safely.

As the test series progresses, engineers will perform three classifications of testing: development, design load and overload. Each level of testing is designed to fully test the performance of the new parachute design with different size payloads under varying conditions. The next test in the cycle -- scheduled for fall 2009 -- will involve the first design limit load test of a single main parachute.

The Ares I recovery system currently under development uses parachutes similar to those used for the four-segment space shuttle boosters, but the parachutes have been redesigned to accommodate the new requirements of the Ares I first stage. The Ares I launch vehicle will have a five-segment solid rocket booster that will fly faster and fall from a higher altitude than the shuttle boosters.

ATK Space Systems near Promontory, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is responsible for design, development and testing of the parachutes at its facilities at NASA's Kennedy Space Center in Florida.

NASA's Johnson Space Center in Houston manages the Constellation Program. Marshall manages the Ares Projects. The U.S. Army's Yuma Proving Ground provides the test range, support facilities and equipment to NASA for parachute testing.

http://www.nasa.gov/

Captain Kirk's Clone And The Eavesdropper


Imagine Captain Kirk being beamed back to the Starship Enterprise and two versions of the Star Trek hero arriving in the spacecraft's transporter room.


It happened 40 years ago in an episode of the TV science fiction classic, and now scientists at the University of York and colleagues in Japan have managed something strikingly similar in the laboratory - though no starship commander was involved.

The first experimental demonstration of quantum telecloning has been achieved by scientists at the University of Tokyo, the Japan Science and Technology Agency, and the University of York. The work is reported in the latest issue of Physical Review Letters. Telecloning combines cloning (or copying) with teleportation (i.e., disembodied transport).

The scientists have succeeded in making the first remote copies of beams of laser light, by combining quantum cloning with quantum teleportation into a single experimental step. Telecloning is more efficient than any combination of teleportation and local cloning because it relies on a new form of quantum entanglement - multipartite entanglement.

Professor Sam Braunstein, of the Department of Computer Science at York, said: "Quantum mechanics allows us to do things which we previously thought were impossible. In 1998, I was involved in an experiment in America which was one of the first for quantum teleportation in which we transmitted a beam of light without it crossing the physical medium in between.

"This new experiment is an extension of that work. Whether it will change the world for individuals or is just of use to governments or big companies is hard to say. Any new protocol is like a new-born baby and it has to develop, but we know this one could be used to tap cryptographic channels.

"Quantum cryptographic protocols are so secure that they can not only discover tapping but also where and how much information is leaking out. Now, using telecloning, the identity and location of the eavesdropper can be concealed."

Telecloning and teleportation may no longer be theories, but we are still a long way from teleporting people.

Professor Braunstein said: "What we know is that it would be incredibly difficult and from the perspective of today's technology, a completely outrageous thing. But in 100 years, who knows?"



http://www.york.ac.uk/

'Star Trek' Warp Speed


With the new movie ‘Star Trek’ opening in theaters across the nation, one thing movie goers will undoubtedly see is the Starship Enterprise racing across the galaxy at the speed of light. But can traveling at warp speed ever become a reality?


Two Baylor University physicists believe they have an idea that can turn traveling at the speed of light from science fiction to science, and their idea does not break any laws of physics.

Dr. Gerald Cleaver, associate professor of physics at Baylor, and Dr. Richard Obousy, a Baylor post-doctoral student, theorize that by manipulating the space-time dimensions around the spaceship with a massive amount of energy, it would create a “bubble” that could push the ship faster than the speed of light. To create this bubble, the Baylor physicists believe manipulating the 11-dimension would create dark energy. Cleaver said positive dark energy is responsible for speeding up the universe as time moves on, just like it did after the Big Bang, when the universe expanded faster than the speed of light.

“Think of it like a surfer riding a wave,” said Cleaver, who co-authored the paper with Obousy about the new method. “The ship would be pushed by the bubble and the bubble would be traveling faster than the speed of light.”

The method is based on the Alcubierre drive, which proposes expanding the fabric of space behind a ship into a bubble and shrinking space-time in front of the ship. The ship would not actually move, rather the ship would sit in between the expanding and shrinking space-time dimensions. Since space would move around the ship, the theory does not violate Einstein’s Theory of Relativity, which states that it would take an infinite amount of energy to accelerate an object faster than the speed of light.

String theory suggests the universe is made up of multiple dimensions. Height, width and length are three dimensions, and time is the fourth dimension. Scientists believe that there are a total of 10 dimensions, with six other dimensions that we can not yet identify. A new theory, called M-theory, takes string theory one step farther and states that the “strings” actually vibrate in an 11-dimensional space. It is this 11th dimension that the Baylor researchers believe could help propel a ship faster than the speed of light.

The Baylor physicists estimate that the amount of energy needed to influence the extra dimensions is equivalent to the entire mass of Jupiter being converted into energy.

“That is an enormous amount of energy,” Cleaver said. “We are still a very long ways off before we could create something to harness that type of energy.”

http://www.baylor.edu/

Mars Sample Return


The first robotic mission to return samples to Earth from Mars took a further step toward realisation with the recent publication of a mission design report by the iMARS Working Group. The report defines key elements of the future internationally-funded mission involving the cooperation of ESA, NASA and other national agencies.


iMARS, which stands for the International Mars Architecture for the Return of Samples, is a committee of the International Mars Exploration Working Group made up of scientists, engineers, strategic planners, and managers. The report, which comes after months of deliberation, outlines the scientific and engineering requirements of such an international mission to be undertaken in the timeframe 2020-2022.

The Mars Sample Return mission is an essential step with respect to future exploration goals and the prospect of establishing a future human mission to Mars. Returned samples will increase the knowledge of the properties of Martian soil and contribute significantly to answering questions about the possibility of life on the Red Planet. This mission will improve our understanding of the Mars environment to support planning for the future human exploration.

The iMARS report outlines the mission’s scientific objectives including the types and quantities of samples to be returned from Mars; the different mission elements (launchers, spacecraft, Mars lander, a rover and a Mars ascent vehicle) and ground processing facilities necessary to contain and analyse the received samples in a protected environment. A preliminary timeline for the mission and approximate budget has also been defined.

“Exploration is gaining momentum year by year, as is the experience and knowledge gained by ESA and its international partners in this area” said Bruno Gardini ESA’s Exploration Programme Manager in the Directorate of Human Spaceflight and iMARS study leader. “The information we gain from current Mars missions and from the ISS provide a basis not only for future robotic missions but also a stepping stone for the human exploration missions.”


http://www.esa.int/esaCP/index.html

New Spaceship Force Field Makes Mars Trip Possible


According to the international space agencies, "space weather" is the single greatest obstacle to deep space travel. Radiation from the sun and cosmic rays pose a deadly threat to astronauts in space. New research shows how knowledge gained from the pursuit of nuclear fusion research may reduce the threat to acceptable levels, making humanity's first mission to Mars a much greater possibility.


The solar energetic particles, although just part of the 'cosmic rays' spectrum, are of greatest concern because they are the most likely to cause deadly radiation damage to the astronauts.

Large numbers of these energetic particles occur intermittently as "storms" with little warning and are already known to pose the greatest threat to man. Nature helps protect the Earth by having a giant "magnetic bubble" around the planet called the magnetosphere.

The Apollo astronauts of the 1960's and 70's who walked upon the Moon are the only humans to have travelled beyond the Earth's natural "force field" – the Earth's magnetosphere. With typical journeys on the Apollo missions lasting only about 8 days, it was possible to miss an encounter with such a storm; a journey to Mars, however, would take about eighteen months, during which time it is almost certain that astronauts would be enveloped by such a "solar storm".

Space craft visiting the Moon or Mars could maintain some of this protection by taking along their very own portable "mini"-magnetosphere. The idea has been around since the 1960's but it was thought impractical because it was believed that only a very large (more than 100km wide) magnetic bubble could possibly work.

Researchers at the Science and Technology Facilities Council's Rutherford Appleton Laboratory, the Universities of York, Strathclyde and IST Lisbon, have undertaken experiments, using know-how from 50 years of research into nuclear fusion, to show that it is possible for astronauts to shield their spacecrafts with a portable magnetosphere - scattering the highly charged, ionised particles of the solar wind and flares away from their space craft.

Computer simulations done by a team in Lisbon with scientists at Rutherford Appleton last year showed that theoretically a very much smaller "magnetic bubble" of only several hundred meters across would be enough to protect a spacecraft.

Now this has been confirmed in the laboratory in the UK using apparatus originally built to work on fusion. By recreating in miniature a tiny piece of the Solar Wind, scientists working in the laboratory were able to confirm that a small "hole" in the Solar Wind is all that would be needed to keep the astronauts safe on their journey to our nearest neighbours.

Dr. Ruth Bamford, one of the lead researchers at the Rutherford Appleton Laboratory, said, "These initial experiments have shown promise and that it may be possible to shield astronauts from deadly space weather."


http://www.iop.org/

Shields For The Starship Enterprise: A Reality?


In the last year space agencies in the United States, Europe, China, Japan and India have announced their intention to resume human exploration of the Solar system, beginning with the Moon and perhaps ultimately moving on to Mars. But travel beyond the immediate vicinity of the Earth carries significant risks for astronauts, not the least of which is the exposure to sometimes high levels of radiation. Now a team of scientists at the Rutherford Appleton Laboratory are set to construct an experimental magnetic shield that would protect explorers in their journeys between the planets. Dr Ruth Bamford presented this idea at the Royal Astronomical Society National Astronomy Meeting in Preston.

Cosmic rays and radiation from the Sun itself can cause acute radiation sickness in astronauts and even death. Between 1968 and 1973, the Apollo astronauts going to the moon were only in space for about 10 days at a time and were simply lucky not to have been in space during a major eruption on the sun that would have flooded their spacecraft with deadly radiation. In retrospect Neil Armstrong’s ‘one small step for Man’ would have looked very different if it had.

On the International Space Station there is a special thick-walled room to which the astronauts have had to retreat during times of increased solar radiation. However on longer missions the astronauts cannot live within shielded rooms, since such shielding would add significantly to the mass of the spacecraft, making them much more expensive and difficult to launch. It is also now known that the ‘drip-drip’ of even lower levels of radiation can be as dangerous as acute bursts from the sun.

On the surface of the Earth we are protected from radiation by the thick layers of the atmosphere. And the terrestrial magnetic field extends far into space, acting as a natural ‘force field’ to further protect our planet and deflecting the worst of the energetic particles from the Sun by creating a ‘plasma barrier’.

Now scientists at the Rutherford Appleton Laboratory in Oxfordshire plan to mimic nature. They will build a miniature magnetosphere in a laboratory to see if a deflector shield can be used to protect humans living on space craft and in bases on the Moon or Mars.

In order to work, an artificial mini-magnetosphere on a space craft will need to utilise many cutting edge technologies, such as superconductors and the magnetic confinement techniques used in nuclear fusion.

Thus science is following science fiction once again. The writers of Star Trek realised that any space craft containing humans would need protection from the hazardous effects of cosmic radiation. They envisioned a ‘deflector shield’ spreading out from the Starship Enterprise that the radiation would bounce off. These experiments will help to establish whether this idea could one day become a practical reality.


http://www.ras.org.uk/

More 'Star Trek' Than 'Snuggie'


Alien creatures are the least of NASA's worries when it comes to moon travel. There are several potential threats to future missions - with space radiation at the top of the list. Now, a group of students at North Carolina State University has developed a "blanket" of sorts that covers lunar outposts - the astronauts' living quarters - to provide astronauts protection against radiation while also generating and storing power.
Astronauts who previously traveled to the moon had little protection against radiation, but were only exposed to it for a short amount of time. NASA's plans to return astronauts to the moon by 2020 - and to potentially keep them there for several months at a time - could be stymied by space radiation.

The surface of the moon is exposed to cosmic rays and solar flares - making radiation hard to stop with shielding. When these rays hit matter, they produce a dangerous spray of secondary particles which, when penetrating human flesh, can damage DNA, boosting the risk of cancer and other maladies.

Groups all over the globe are trying to determine ways to combat space radiation - including Michael Sieber, Ryan Boyle and Anne Tomasevich, all recent graduates of the textile engineering program at NC State. Their design of a lunar radiation shield with the ability to protect its inhabitants from radiation was reviewed by a panel of industry experts and chosen as one of 10 undergraduate abstract finalists in the Revolutionary Aerospace Systems Concepts Academic Linkage (RASC-AL) competition.

Sponsored by NASA and the National Institute of Aerospace, the RASC-AL competition challenges university students to think about what sorts of conditions astronauts will face when returning to the moon, then design projects that might become part of actual lunar exploration.

"We had many factors to consider in developing this outpost cover - not just being able to protect against radiation," Sieber says. "The product needed to be as lightweight as possible to feasibly fit on the transportation module, and have the ability to be easily erected by a minimum number of astronauts for immediate use once landing on the moon."

"These obstacles are where our knowledge of textile properties will give us an advantage," adds Dr. Warren Jasper, professor of textile engineering and advisor for the project. "This is a competition aimed at aerospace engineering students, but we understand the properties associated with different textile materials, and that gives us unique insight on how to troubleshoot some of these issues."

The "lunar texshield" is made from a lightweight polymer material that has a layer of radiation shielding that deflects or absorbs the radiation so astronauts are only exposed to a safe amount. The outermost surface of the shield includes a layer of solar cells to generate electricity, backed up by layers of radiation-absorbing materials. The advantages of the materials used in the design include flexibility, large surface area, ease of transportation, ease of construction and the ability to have multiple layers of independent functional fabrics.

The students will present their lunar texshield at the 2009 RASC-AL Forum held June 1-3 in Cocoa Beach, Fla. The project will be judged by a steering committee made up of experts from NASA, industry and universities.

"We aren't even sure what the prize is for being named first place - but that wasn't what was important to us," Sieber says. "We used what we've learned throughout our college careers and were able to apply that logic to provide a solution a real-world problem. That is what is cool to us."


http://www.ncsu.edu/

Youthful Supernovae Explained?


A team of astronomers, led by Dr. Bo Wang from the Yunnan Observatory of the Chinese Academy of Sciences, has developed a new model which explains the formation of the most youthful type Ia supernovae. In a paper published in Monthly Notices of the Royal Astronomical Society, the researchers show how the transfer of material from a ‘helium star’ to a compact white dwarf companion causes these cataclysmic events to take place early on in the life of the galaxy they formed in.


Most type Ia supernovae are believed to occur when a white dwarf (the superdense remnant that is the end state of stars like the Sun) draws matter from a companion star orbiting close by. When the white dwarf mass exceeds the so-called Chandrasekhar limit of 1.4 times the mass of the Sun, it eventually collapses and within a few seconds undergoes a runaway nuclear fusion reaction, exploding and releasing a vast amount of energy as a type Ia supernova. Due to their high and remarkably consistent luminosities, astronomers use these events as ‘distance indicators’ to measure the distances to other galaxies and constrain our ideas about the Universe.

Scientists have confirmed more and more type Ia supernovae, and found that about half of them explode less than 100 million years after their host galaxy’s main star formation period. But previous models for these systems did not predict that they could be this young so Dr. Wang and his team set out to solve this mystery.

Employing a stellar evolution computer code, they performed calculations for about 2600 binary systems consisting of a white dwarf and a helium star, a hot blue star which has a spectrum dominated by emission from helium. They found that if the gravitational field of the white dwarf pulls material from a helium star and increases its mass beyond the Chandrasekhar limit, it will explode as a type Ia supernova within 100 million years of its formation.

The team now plans to model the properties of the companion helium stars at the moment of the supernova explosions, which could be verified by future observations from the Large sky Area Multi-Object fiber Spectral Telescope (LAMOST).

Team member Prof. Dr. Zhanwen Han comments, “Type Ia supernovae are a key tool to determine the scale of the Universe so we need to be sure of their properties. Our work shows that they can take place early on in the life of the galaxy they reside in.”


http://www.ras.org.uk/

FUSE Observations Strengthen White Dwarf Theory


Observations of the white dwarf star, Sirius B, made with NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite give astronomers firm new evidence that mathematical models widely used to predict white dwarf star mass and radius are correct.


Jay B. Holberg of the University of Arizona Lunar and Planetary Laboratory is presenting the result today at the American Astronomical Society in San Diego.

The FUSE result is important because Sirius B is one of the few stars that astronomers have to test their ideas on the relationship between mass and radius for white dwarf stars. White dwarf stars are small but astonishingly dense stars. Sirius B is the size of the Earth and as massive as the sun.

Theory that describes how white dwarf stars can exist emerged in the early 1930s, when Subramanyan Chandrasekhar – or Chandra, as he was known – calculated the limit to a white dwarf's mass by applying Einstein's theory of special relativity. It was one of the first applications of quantum mechanics to large physical systems in the sky.

No white dwarf star could be more than 1.4 times as massive as the sun or it will collapse, Chandra predicted.

"Chandra was the first person to lay out the essential details of how white dwarfs sustain themselves, and it is very, very different from the sun or any other stars," Holberg said.

Unlike most white dwarfs, Sirius B is part of a binary system, and astronomers can determine the mass of stars in a binary system.

"Having a binary system – when two stars orbit one another - is virtually the only way you can fundamentally measure the mass of a star," Holberg said. "You observe their orbits, get the period, know how far away they are, and you can find the sum of the two star masses. If you can time the orbits and know how far apart the stars are, you can determine the individual star masses. That's the most accurate way, the acceptable way to determine star masses.

"But this star has always been devilishly difficult to observe," Holberg said. The primary star in the system, Sirius A, is 8 light years from Earth and has twice the mass of the sun. It is the brightest star in the night sky, visible below Orion. Sirius B is 10,000 times dimmer than Sirius A. Astronomers can’t even see the white dwarf companion when it comes closest to the primary star during its 50-year, very elongated orbit around Sirius A.

For the post several years, Holberg and colleagues have observed Sirius B with the Voyager and Extreme Ultraviolet Explorer spacecrafts. They have refined the star's temperature and gravity - gravity being the gravitational field at the surface of the star - to refine estimates of its mass and radius.

"The methods we're using are spectroscopic. They infer the mass from synthetic models that we produce from measurements of temperature and gravity, the only two parameters of matter for a white dwarf."

Holberg and his colleagues published the best determination of Sirius B's mass-radius relationship in 1998, but that was "still far from definitive," Holberg said. "That is, the uncertainties are so large, that while these studies define the basic relationship, they don’t tell you lots of details we need to know about these stars."

The FUSE observations gave Holberg and his colleagues better spectral data on Sirius B's gravitational field and temperature needed to calculate mass. "And this is a very clean spectrum. We rolled the FUSE spacecraft to keep Sirius A from contaminating the spectrum, and we succeeded very well.

"The mathematical model very well predicts our results on the gravitational field, temperature and brightness of this white dwarf star," Holberg said. "That helps us determine the radius of the star. What we really want to do is determine mass and radius to within one percent. By verifying the Chandrasekhar limit, you put a great deal of astrophysics on much firmer footing," he added.

"Astronomy has reached the level where you can make very definitive comparisons between the models and the observations. And it looks like we are going to come out to what we expected," Holberg said.


http://www.arizona.edu/

Undercover Stars Among Exoplanet Candidates


An international team of astronomers have accurately determined the radius and mass of the smallest core-burning star known until now.
The observations were performed in March 2004 with the FLAMES multi-fibre spectrograph on the 8.2-m VLT Kueyen telescope at the ESO Paranal Observatory (Chile). They are part of a large programme aimed at measuring accurate radial velocities for sixty stars for which a temporary brightness "dip" has been detected during the OGLE survey.

The astronomers find that the dip seen in the light curve of the star known as OGLE-TR-122 is caused by a very small stellar companion, eclipsing this solar-like star once every 7.3 days.

This companion is 96 times heavier than planet Jupiter but only 16% larger. It is the first time that direct observations demonstrate that stars less massive than 1/10th of the solar mass are of nearly the same size as giant planets. This fact will obviously have to be taken into account during the current search for transiting exoplanets.

In addition, the observations with the Very Large Telescope have led to the discovery of seven new eclipsing binaries, that harbour stars with masses below one-third the mass of the Sun, a real bonanza for the astronomers

http://www.eso.org/public/

Local Star's Cool Companion


An international team, led by astronomers at the University of Hertfordshire in the UK, have discovered one of the coolest sub-stellar bodies ever found outside our own solar system, orbiting the red dwarf star Wolf 940, some 40 light years from Earth. Dr Ben Burningham of the University of Hertfordshire will present this discovery on Monday 20th April at the European Week of Astronomy and Space Science conference.
"Although it has a temperature of 300 degrees Celsius, almost hot enough to melt lead, temperature is relative when you study this sort of thing, and this object is cool by stellar standards. In fact this is the first time we've been able to study an object as cool as this in such detail", says Dr Burningham, "the fact that it is orbiting a star makes it extra special".

The object is thought to have formed like a star, but has ended up looking more like Jupiter. It is roughly the same size, despite being between 20 and 30 times as heavy, and when the infrared spectral "fingerprints" of the two objects are compared, their resemblance is striking.

The new object orbits its star at about 440 times the distance at which the Earth orbits the sun. At such a wide distance, it takes about 18,000 years to complete a single orbit.

Too small to be stars, so-called "brown dwarfs" have masses lower than stars but larger than gas giant planets like Jupiter. Due to their low temperature these objects are very faint in visible light, and are detected by their glow at infrared wavelengths.

Modelling the atmospheres of cool brown dwarfs is a complex task, but it is key to understanding what we see when we look at planets that orbit other stars. Models of emitted light from such objects, which are dominated by absorption due to water and methane gas, are sensitive to assumptions about their age and chemical make-up.

In most cases astronomers don't initially know much about the age and composition of brown dwarfs and this can make it hard to tell where the models are right, and where they are going wrong.

"What's so exciting in this case, is that we can use what we know about the primary star to find out about the properties of the brown dwarf, and that makes it an extremely useful find", explains Dr Burningham, "you can think of it as a Rosetta Stone for decrypting what the light from such cool objects is telling us".

The object has been named Wolf 940B, after the red dwarf star that it orbits, which was first catalogued by the pioneering German astronomer Max Wolf ninety years ago.

"Red dwarfs are the most populous stars in the Galaxy, and systems like this may be more common than we know" says Dr David Pinfield of the University of Hertfordshire, "As the generation of ongoing large scale surveys continues, we may discover a pack of Wolf-940B-like objects in our solar back yard."

Wolf 940B was initially discovered as part of a major infrared sky survey - the UKIRT Infrared Deep Sky Survey (UKIDSS) which is being carried out using the United Kingdom Infrared Telescope (UKIRT) on Mauna Kea in Hawaii.

The object was found as part of a wider effort to find the coolest and least luminous bodies in our local Galactic neighbourhood, but it was then found to be a companion to the nearby red dwarf Wolf 940 through its common motion across the sky. The data used to confirm the discovery were obtained using telescopes in Chile, the Canary Islands and Hawaii.

Its temperature was then confirmed using data from the Gemini-North telescope on Mauna Kea. The team's findings will soon be published in the Monthly Notices of the Royal Astronomical Society.

Following its discovery with ground based telescopes, Wolf 940B, has since been observed by the NASA's Spitzer Space Telescope, and the findings from those observations will be published later this year.

"This object is going to continue to provide insights into the processes of cool brown dwarf, and warm planetary atmospheres for some time to come", says Dr Sandy Leggett, of the Gemini Observatory, "finding it was just the first step".


http://www.ras.org.uk/

The Sun's New Exotic Neighbor


Using the European Southern Observatory's Very Large Telescope in Chile, an international team of researchers discovered a brown dwarf belonging to the 24th closest stellar system to the Sun. Brown dwarfs are intermediate objects that are neither stars nor planets. This object is the third closest brown dwarf to the Earth yet discovered, and one of the coolest, having a temperature of about 750 degrees Centigrade. It orbits a very small star at about 4.5 times the mean distance between the Earth and the Sun. Its mass is estimated to be somewhere between 9 and 65 times the mass of Jupiter.


At a time when astronomers are peering into the most distant Universe, looking at objects as far as 13 billion light-years away, one may think that our close neighbourhood would be very well known. Not so. Astronomers still find new star-like objects in our immediate vicinity. Using ESO's VLT, they just discovered a brown dwarf companion to the red star SCR 1845-6357, the 36th closest star to the Sun.

"This newly found brown dwarf is a valuable object because its distance is well known, allowing us to determine with precision its intrinsic brightness", said team member Markus Kasper (ESO). "Moreover, from its orbital motion, we should be able in a few years to estimate its mass. These properties are vital for understanding the nature of brown dwarfs."

To discover this brown dwarf, the team used the high-contrast adaptive optics NACO Simultaneous Differential Imager (SDI) on ESO's Very Large Telescope, an instrument specifically developed to search for extrasolar planets. The SDI camera enhances the ability of the VLT and its adaptive optics system to detect faint companions that would normally be lost in the glare of the primary star. In particular, the SDI camera provides additional, often very useful spectral information which can be used to determine a rough temperature for the object without follow-up observations.

Located 12.7 light-years away from us, the newly found object is nevertheless not the closest brown dwarf. This honour goes indeed to the two brown dwarfs surrounding the star Epsilon Indi, located 11.8 light years away.

However, this newly discovered brown dwarf is unique in many aspects. "Besides being extremely close to Earth, this object is a T dwarf - a very cool brown dwarf - and the only such object found as a companion to a low-mass star," said Beth Biller, a graduate student at the University of Arizona and lead author of the paper reporting the discovery. "It is also likely the brightest known object of its temperature because it is so close."

The discovery of this brown dwarf hints that, at least close to the Sun, cool brown dwarfs prefer to be part of a couple with a star or another brown dwarf, rather than wandering alone in the cosmic emptiness. Indeed, of the seven cool brown dwarfs that reside within 20 light years of the Sun, five have a companion.

"This has wide-ranging implications for theories of brown dwarf formation, which, until now, tend to favour the production of single brown dwarfs," said team member Laird Close (University of Arizona).

http://www.eso.org/public/

Astronomers Discover Youngest And Lowest Mass Dwarfs In Solar Neighborhood


Astronomers have found three brown dwarfs with estimated masses of less than 10 times that of Jupiter, making them among the youngest and lowest mass sub-stellar objects detected in the solar neighbourhood to date.

The observations were made by a team of astronomers working at the Laboratoire d'Astrophysique de l'Observatoire de Grenoble (LAOG), France, using the Canada-France-Hawaii Telescope (CFHT). Andrew Burgess will be presenting the discovery at the European Week of Astronomy and Space Science at the University of Hertfordshire, Hatfield, on Wednesday 22nd April.

The dwarfs were found in a star forming region named IC 348, which lies almost 1000 light years from the Solar System towards the constellation of Perseus. This cluster is approximately 3 million years old – extremely young compared to our 4.5 billion year old Sun – which makes it a good location in order to search for the lowest mass brown dwarfs. The dwarfs are isolated in space, which means that they are not orbiting a star, although they are gravitationally bound to IC 348. Their atmospheres all show evidence of methane absorption which was used to select and identify these young objects.

"There has been some controversy about identifying young, low mass brown dwarfs in this region. An object of a similar mass was discovered in 2002, but some groups have argued that it is an older, cooler brown dwarf in the foreground coinciding with the line of sight. The fact that we have detected three candidate low-mass dwarfs towards IC 348 supports the finding that these really are very young objects," said Burgess.

The team set out to find a population of these brown dwarfs in order to help theoreticians develop more accurate models for the distribution of mass in a newly-formed population, from high mass stars to brown dwarfs, which is needed to test current star formation theories. The discovery of the dwarfs in IC 348 has allowed them to set new limits on the lowest mass objects.

"Finding three candidate low-mass dwarfs towards IC 348 backs up predictions for how many low-mass objects develop in a new population of stars. Brown dwarfs cool with age and current models estimate that their surfaces are approximately 900-1000 degrees Kelvin (about 600-700 degrees Celsius). That’s extremely cool for objects that have just formed, which implies that they have the lowest masses of any of this type of object that we’ve seen to date," said Burgess.


http://www.ras.org.uk/

Boring Star May Mean Livelier Planet, Astronomer Says


Boring” light from red dwarf star Gliese 581 means better odds for extraterrestrial life in that planetary system, according to University of British Columbia astronomer Jaymie Matthews.

Approximately 20.5 light years from the Earth, Gliese 581 made the headlines in April 2007 when European scientists discovered a planet, named Gliese 581c. Dubbed “SuperEarth,” the planet orbits Gliese 581 and could have water -- and thus able to support life.

“The Gliese 581 system is the first to be found -- beyond our own Earth -- that might have a liveable planet,” said Matthews.

Using Canada Space Agency’s suitcase-sized space telescope, the Microvariability and Oscillations of STars (MOST), Matthews put Gliese 581 on a six-week scientific stakeout following the April discovery. He will present his findings today at the Canadian Astronomical Society’s annual meeting in Kingston, Ontario.

Matthews and his team searched for the subtle dips in the light from the star when the planet’s orbit carried it directly between the star and the Earth, resulting in a “mini-eclipse” every 13 days. The depth of the dips would help researchers determine the size of the planet Gliese 581c, while the behaviour of the starlight at other times would help astronomers gauge the suitability of Gliese 581 as a “home star,” a star able to sustain life on planets around it.

“Gliese 581 seems remarkably stable over the six weeks it was monitored by MOST,” said Matthews. “The brightness of the star changed by only a few tenths of a percent over that time. This level of stability means that it provides a stable source of light -- hence heat -- to the surface of planet Gliese 581c.

“The climate there should not be a wild rollercoaster ride that would make it difficult for life to get a foothold,” said Matthews. “It also suggests the star is quite old, and settled in its ways, and that the planets around it have probably been around for billions of years.”

It took approximately 3.5 billion years for life on Earth to reach the level of complexity that we call human, said Matthews. “So if Gliese 581 has been around for at least that long, it’s more encouraging for the prospects of complex life on any planet around it.”

With space missions like MOST, the French satellite COROT, which joined MOST in orbit late last December, and the American Kepler mission due for launch in November 2008, Matthews predicts that other ‘Earthy’ worlds will come to light in the coming months and years.

“Some of them will have orbits that produce planetary alignments,” said Matthews. “Not the kind that excites somebody reading a horoscope but the kind that’s exciting for astronomers because they will allow us to test our models of alien worlds -- worlds that might be homes to neighbours in our Galactic city, the Milky Way.”

MOST is a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

http://www.astro.ubc.ca/MOST/

Lightest Exoplanet Yet Discovered


Exoplanet researchers have discovered the lightest exoplanet found so far. The planet, “e”, in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist.
These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile.

“The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone’ — a region around the host star with the right conditions for water to be liquid on a planet’s surface,” says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough.

Planet Gliese 581 e orbits its host star – located only 20.5 light-years away in the constellation Libra (“the Scales”) — in just 3.15 days. “With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet”, says co-author Xavier Bonfils from Grenoble Observatory.

Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations — also obtained with the HARPS spectrograph at ESO’s La Silla Observatory and announced two years ago — this star was known to harbour a system with a Neptune-sized planet and two super-Earths. With the discovery of Gliese 581 e, the planetary system now has four known planets, with masses of about 1.9 (planet e), 16 (planet b), 5 (planet c), and 7 Earth-masses (planet d). The planet furthest out, Gliese 581 d, orbits its host star in 66.8 days.

“Gliese 581 d is probably too massive to be made only of rocky material, but we can speculate that it is an icy planet that has migrated closer to the star,” says team member Stephane Udry. The new observations have revealed that this planet is in the habitable zone, where liquid water could exist. “‘d’ could even be covered by a large and deep ocean — it is the first serious 'water world' candidate,” continued Udry.

The gentle pull of an exoplanet as it orbits the host star introduces a tiny wobble in the star’s motion — only about 7 km/hour, corresponding to brisk walking speed — that can just be detected on Earth with today’s most sophisticated technology. Low-mass red dwarf stars such as Gliese 581 are potentially fruitful hunting grounds for low-mass exoplanets in the habitable zone. Such cool stars are relatively faint and their habitable zones lie close in, where the gravitational tug of any orbiting planet found there would be stronger, making the telltale wobble more pronounced. Even so, detecting these tiny signals is still a challenge, and the discovery of Gliese 581 e and the refinement of Gliese 581 d’s orbit were only possible due to HARPS’s unique precision and stability.

“It is amazing to see how far we have come since we discovered the first exoplanet around a normal star in 1995 — the one around 51 Pegasi,” says Mayor. “The mass of Gliese 581 e is 80 times less than that of 51 Pegasi b. This is tremendous progress in just 14 years.”

The astronomers are confident that they can still do better. “With similar observing conditions an Earth-like planet located in the middle of the habitable zone of a red dwarf star could be detectable,” says Bonfils. “The hunt continues.”

http://www.eso.org/public/

First Detailed Pictures Of Asteroid Reveal Bizarre System


The first detailed images of a binary asteroid system reveal a bizarre world where the highest points on the surface are actually the lowest, and the two asteroids dance in each other's gravitational pull.

A binary asteroid is a system where two asteroids orbit around one another, like a mini Earth-moon system, said Daniel Scheeres, University of Michigan associate professor of aerospace engineering. The new results are scheduled to appear Oct. 12 in the journal Science in a pair of papers by Scheeres and Dr. Steven Ostro of the NASA/Caltech Jet Propulsion Laboratory.

The radar images of asteroid KW4 (the official full designation is 66391 1999 KW4) were obtained in May 2001, when the asteroid passed 4.8 million kilometers from Earth. Previously, KW4 was classified as a potentially hazardous asteroid (PHA) because of the proximity of the asteroid's orbit to Earth's orbit. The new observations show that there is no chance of KW4 hitting Earth within at least the next 1,000 years, Scheeres said.

"The KW4 results have profound consequences for ideas about mitigation of the asteroid collision hazard," Scheeres said.

The observations show that the larger object is spinning in its orbit so fast that it has been flattened into a kind of flying saucer shape, said Scheeres. Because of this, the mountainous region along the center of the asteroid actually forms the lowest part on the asteroid. In fact the asteroid is spinning so fast that the equatorial ridge is very close to lifting off the surface and spinning into space, he said.

Another interesting finding is that the two bodies in the asteroid system are orbiting so closely that they are caught in each other's gravitational pull.

"They are so close together that when one rotates it affects the other's movements," Scheeres said.

Based on the observations, the KW4 binary asteroid appears to have formed either from tidal disruption during a close pass by the Earth or from sunlight shining on it, so that it spins so fast that it eventually broke into two pieces. The odd shapes of asteroids cause them to sometimes spin faster and faster when illuminated by the sun, acting a bit like a solar sail, Scheeres said. This is called the YORP effect.

The recent findings also confirm that the asteroids are only floating piles of rubble held together by gravity and not a solid mass.


http://www.umich.edu/

How To Destroy An Asteroid: Blowing Up Killer Space Rocks Without Dangerous Debris


In the hit 1998 movie Armageddon, Bruce Willis and Ben Affleck blew up an asteroid to save the world. While the film was science fiction, the chances of an asteroid hitting the Earth one day are very real ― and blowing up an asteroid in real life, says a Tel Aviv University researcher, will be more complicated than in the movies.
Astrophysicists agree that the best method for avoiding a catastrophic collision would be to change the path of the asteroid heading toward our planet. “For that to work, we need to be able to predict what would happen if we attempt an explosion,” says Tel Aviv University doctoral student David Polishook, who is studying asteroids with his supervisor Dr. Noah Brosch at the Department of Geophysics and Planetary Sciences.

Polishook and Brosch are among the few scientists in the world researching the structure and composition of asteroids a critical first step in learning how to destroy them before they reach the Earth’s atmosphere. Their research could prevent catastrophe: blowing up an asteroid may create many equally dangerous smaller asteroids of about 100 meters each in diameter ― twice the size of the asteroid that created the famous Arizona crater.

Looking on the Bright Sides

“The information we are investigating can have a tremendous impact on future plans to alter the course of asteroids on a collision course with Earth,” says Polishook. “Science needs to know whether asteroids are solid pieces of rock or piles of gravel, what forces are holding them together, and how they will break apart if bombed.”

By observing the waxing and waning brightness of far-away asteroids, Polishook is able to examine the shape, spin period and surface composition of these flying rocks. “This is a good way of evaluating what asteroids are made of,” says Polishook, who takes measurements on an almost daily basis at Tel Aviv University's Wise Observatory.

As part of their observations, the researchers used the fact that small asteroids change their rotation rate, accelerating or slowing down during short periods, as often as every 100,000 years. Compared to the age of the solar system 4.5 billion years that is an extremely fast change, says Polishook.

The most recent results of their research were presented at the 2008 meeting of Asteroids, Comets and Meteors, sponsored by the Johns Hopkins University Applied Physics Laboratory in Baltimore.

Size Matters

An asteroid’s rotation and acceleration are influenced by sunlight the “YORP Effect.” If the YORP effect causes an asteroid to rotate faster than one revolution in 2.2 hours, it will break apart.

To understand how the YORP Effect works on asteroids, Tel Aviv University researchers examined several variables relating to these asteroids, including size and location. They concluded that size is the most important factor in determining how an asteroid’s rotation rate accelerates according to the YORP Effect.

“We think this adds an important clue to how asteroids will behave should a space agency need to knock one off-course to prevent a collision with earth,” Polishook notes.


http://www.aftau.org/site/PageServer?pagename=home_page

Solar Wind Tans Young Asteroids


A new study published in Nature this week reveals that asteroid surfaces age and redden much faster than previously thought — in less than a million years, the blink of an eye for an asteroid. This study has finally confirmed that the solar wind is the most likely cause of very rapid space weathering in asteroids.
This fundamental result will help astronomers relate the appearance of an asteroid to its actual history and identify any after effects of a catastrophic impact with another asteroid.

“Asteroids seem to get a ‘sun tan’ very quickly,” says lead author Pierre Vernazza. “But not, as for people, from an overdose of the Sun’s ultraviolet radiation, but from the effects of its powerful wind.”

It has long been known that asteroid surfaces alter in appearance with time — the observed asteroids are much redder than the interior of meteorites found on Earth [1] — but the actual processes of this “space weathering” and the timescales involved were controversial.

Thanks to observations of different families of asteroids [2] using ESO’s New Technology Telescope at La Silla and the Very Large Telescope at Paranal, as well as telescopes in Spain and Hawaii, Vernazza’s team have now solved the puzzle.

When two asteroids collide, they create a family of fragments with “fresh” surfaces. The astronomers found that these newly exposed surfaces are quickly altered and change colour in less than a million years — a very short time compared to the age of the Solar System.

“The charged, fast moving particles in the solar wind damage the asteroid’s surface at an amazing rate [3]”, says Vernazza. Unlike human skin, which is damaged and aged by repeated overexposure to sunlight, it is, perhaps rather surprisingly, the first moments of exposure (on the timescale considered) — the first million years — that causes most of the aging in asteroids.

By studying different families of asteroids, the team has also shown that an asteroid’s surface composition is an important factor in how red its surface can become. After the first million years, the surface “tans” much more slowly. At that stage, the colour depends more on composition than on age. Moreover, the observations reveal that collisions cannot be the main mechanism behind the high proportion of “fresh” surfaces seen among near-Earth asteroids. Instead, these “fresh-looking” surfaces may be the results of planetary encounters, where the tug of a planet has “shaken” the asteroid, exposing unaltered material.

Thanks to these results, astronomers will now be able to understand better how the surface of an asteroid — which often is the only thing we can observe — reflects its history.

Notes

[1] Meteorites are small fragments of asteroids that fall on Earth. While a meteorite enters the Earth's atmosphere its surface can melt and be partially charred by the intense heat. Nevertheless, the meteorite interior remains unaffected, and can be studied in a laboratory, providing a wealth of information on the nature and composition of asteroids.

[2] An asteroid family is a group of asteroids that are on similar orbits around the Sun. The members of a given family are believed to be the fragments of a larger asteroid that was destroyed during a collision.

[3] The surface of an asteroid is affected by the highly energetic particles forming the solar wind. These particles partially destroy the molecules and crystals on the surface, re-arranging them in other combinations. Over time, these changes give formation of a thin crust or irradiated material with distinct colours and properties.

http://www.nature.com/nature/journal/v458/n7241/full/nature07956.html

New Way To Weigh Giant Black Holes


How do you weigh the biggest black holes in the universe? One answer now comes from a completely new and independent technique that astronomers have developed using data from NASA's Chandra X-ray Observatory.

By measuring a peak in the temperature of hot gas in the center of the giant elliptical galaxy NGC 4649, scientists have determined the mass of the galaxy's supermassive black hole. The method, applied for the first time, gives results that are consistent with a traditional technique.

Astronomers have been seeking out different, independent ways of precisely weighing the largest supermassive black holes, that is, those that are billions of times more massive than the Sun. Until now, methods based on observations of the motions of stars or of gas in a disk near such large black holes had been used.

"This is tremendously important work since black holes can be elusive, and there are only a couple of ways to weigh them accurately," said Philip Humphrey of the University of California at Irvine, who led the study. "It's reassuring that two very different ways to measure the mass of a big black hole give such similar answers."

NGC 4649 is now one of only a handful of galaxies for which the mass of a supermassive black hole has been measured with two different methods. In addition, this new X-ray technique confirms that the supermassive black hole in NGC 4649 is one of the largest in the local universe with a mass about 3.4 billion times that of the Sun, about a thousand times bigger than the black hole at the center of our galaxy.

The new technique takes advantage of the gravitational influence the black hole has on the hot gas near the center of the galaxy. As gas slowly settles towards the black hole, it gets compressed and heated. This causes a peak in the temperature of the gas right near the center of the galaxy. The more massive the black hole, the bigger the temperature peak detected by Chandra.

This effect was predicted by two of the co-authors -- Fabrizio Brighenti from the University of Bologna, Italy, and William Mathews from the University of California at Santa Cruz -- almost 10 years ago, but this is the first time it has been seen and used.

"It was wonderful to finally see convincing evidence of the effects of the huge black hole that we expected," said Brighenti. "We were thrilled that our new technique worked just as well as the more traditional approach for weighing the black hole."

The black hole in NGC 4649 is in a state where it does not appear to be rapidly pulling in material towards its event horizon, nor generating copious amounts of light as it grows. So, the presence and mass of the central black hole has to be studied more indirectly by tracking its effects on stars and gas surrounding it. This technique is well suited to black holes in this condition.

"Monster black holes like this one power spectacular light shows in the distant, early universe, but not in the local universe," said Humphrey. "So, we can't wait to apply our new method to other nearby galaxies harboring such inconspicuous black holes."

These results will appear in an upcoming issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Blog Archive